Efficient Summarization of URLs
Using CRC32 for Implementing URL Switching

Zornitza Genova
Kenneth J. Christensen
Department of Computer Science and Engineering
University of South Florida
Tampa, Florida 33620
{zgenova, christen}@csee.usf.edu

This material is based upon work funded by the National Science Foundation under grant no. 9875177

Topics

- Introduction
- Problems
- Digesting of URL lists
- Evaluation
- Summary and future work
Introduction continued

- Content is replicated throughout the Internet

![Diagram]

- Same file found in three places
- Request is sent to the origin server
- Should it be redirected? How? Where?

Introduction continued

- URL routers must share URL lists to build routing tables

![Diagram]

- Sharing of URL lists
- Origin server
- Caches
- Temporary server
Problems

- URL lists...
 - Contain URLs of all distributed files
 - Are very large (~ 5 to 120 Mbytes for a single Web site)
 - each URL router keeps several lists in memory!

 Problem #1: Sharing consumes network bandwidth and prohibits frequent updates
 Problem #2: Variable length URLs make routing table look-ups slow

Digesting of URL lists

- Reduce size of URL list by digesting
 - In the literature...
 - MD5 plus Bloom filter [2]

 - Our idea...
 - Use CRC32 for each URL in list
 - Goals: 1) Less CPU resources than MD5-Bloom
 2) Faster look-up than MD5-Bloom
 - Issue: Does not solve the problem of false hits (collisions) due to non-unique CRC32
Evaluation of digesting

- **Experiment:** CPU time and digest size
 - Input: URL lists from HTTP traces
 - Examine: CPU time to generate digest; size; (hashing) collisions
 - Compare: different compression methods

<table>
<thead>
<tr>
<th>Method</th>
<th>CPU (sec)</th>
<th>Size (MB)</th>
<th>Coll. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5-Bloom (8)</td>
<td>89.13</td>
<td>9.74</td>
<td>0.03</td>
</tr>
<tr>
<td>CRC32</td>
<td>16.22</td>
<td>9.74</td>
<td>0.03</td>
</tr>
<tr>
<td>LZ compression</td>
<td>89.13</td>
<td>9.74</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Evaluation of digesting continued

- **Experiment:** Collisions as a function of URL length
 - Input: URL lists from HTTP traces
 - Examine: Effect of URL string length on collisions
 - Measures: URL string length, collisions
Summary and future work

- URL routers are needed to automatically distribute load
 - Between content sources “Internet wide”

- URL routing tables are large
 - We use CRC32 signatures to digest URL lists

- Our method is better
 - Less CPU resource than MD5-Bloom
 - Same or better collision rate than MD5-Bloom

- Future work
 - Performance evaluation of routing table look-up mechanisms

References

