Computing Distance Histograms Efficiently in Scientific Databases

Yicheng Tu,* Shaoping Chen, *§ and Sagar Pandit*

* University of South Florida, Tampa, FL, U.S.A.
§ Wuhan University of Technology, Wuhan, Hubei, China
Molecular Simulations (MS)

• Large scale biological structures are represented using all the individual atoms.
• Data is stored in single or multiple trajectory databases containing time frames.
• Each frame is a sequential list of atoms with their positions, velocities, perhaps forces, masses, and types.
• Dataset is very large: millions of atoms, tens of thousands of frames.
• Similar methodology in other sciences: astronomy, material science, civil engineering
Querying a MS Database

• Mainstream queries: analytical queries (beyond linear aggregates)
• The m-body correlation functions are very popular
 o Requires \(O(N^m)\) computational time
 (\(N\) is the number of atoms)
• Of special importance is the Radial Distribution Function (RDF)
 o Often computed as a spatial distance histogram (SDH)
 o 2-body function \(\rightarrow O(N^2)\) time
 needed for a brute force algorithm

Figure 1. A simulated hydrated dipalmitoylphosphatidylcholine bilayer system.
Problem Statement

Given coordinates of N points, draw a histogram of all pairwise distances - total distance counts will be $N(N-1)/2$

We focus on the standard SDH, in which

- domain of distance $[0, L_{\text{max}}]$
- Buckets are of the same width: $[0,p), [p, 2p), ...$
- Query has one single parameter: bucket width p of the histogram, or total number of buckets $l = L_{\text{max}}/p$

- Popular simulation packages such as GROMACS\(^1\) all adopt the brute force way of computing SDH
- Can we beat $O(N^2)$?
Our Approach

• Main idea: avoid the calculation of pairwise distances

• Observation: two groups of points can be processed in one shot (i.e., *resolved*) if the range of all inter-group distances falls into a histogram bucket

```
20 15
```

```
Histogram[i] += 20*15;
```
The DM-SDH algorithm

- Organize all data into a Quad-tree (2D data) or Oct-tree (3D data).
- Cache the atoms counts of each tree node.
- Try resolving all pairs of nodes on a tree level M_0
 - If not resolvable, recursively resolve all pairs of children nodes.

Figure 3. Solving a histogram query (bucket width $h = 3$) using two density maps (a density map is the counts of all nodes of a whole tree level) generated from raw data (left) with low (middle) and high (right) resolution.
Complexity analysis of DM-SDH algorithm

• Based on a geometric modeling approach
• The main result:

\[\frac{\alpha(m + 1)}{\alpha(m)} = \frac{1}{2} \]

1. \(\alpha(m) \) is the percentage of pairs of nodes that are NOT resolvable on level \(m \) of the quad(oct)tree.
2. We managed to derive a closed-form for \(\alpha(m) \)

The above result gives the following analysis

Theorem 1: When the particles are reasonably distributed, *the time complexity of DM-SDH is \(O(N^{(2d-1)/2d}) \).

\(O(N^{1.5}) \) for 2D data and \(O(N^{1.667}) \) for 3D data

Only in rare cases is the data not reasonably distributed
Approximate Answers

- $O(N^{1.667})$ not good enough for large N?
- Our solution: approximate algorithms based on our analytical model
 - *Time*: Stop before we reach the leaf nodes
 - *Approximation*: for irresolvable nodes, distribute the distance counts into the overlapping buckets heuristically
 - *Correctness*: consult the table we generate from the model

Figure 5. Running time of DM-SDH vs. brute-force algorithm under different 2D data.
Figure 6. Running time of DM-SDH vs. brute-force algorithm under different 3D data.
Summary

• Distance histogram is an important query in simulation databases
• We propose an algorithm based on a quad-tree-based data structure
• Our algorithm outperforms the brute-force approach
• We develop an approximate algorithm with guaranteed error bound and very low time complexity

Figure 5. Running time (a) and correctness (b-d) of the approximate algorithm