1. Research Methods

Introduction
- Origins of Computer Science
- Research Philosophy

Research Methods
- 1. Feasibility study
- 2. Pilot Case
- 3. Comparative study
- 4. Observational Study [a.k.a. Ethnography]
- 5. Literature survey
- 6. Formal Model
- 7. Simulation

Conclusion
- Studying a Case vs. Performing a Case Study
 + Proposition
 + Unit of Analysis
 + Threats to Validity
1. Research Methods

What is (Ph.d.) Research?

What is exactly a doctorate?

[Link](http://gizmodo.com/5613794/what-is-exactly-a-doctorate)

Computer Science

All science is either physics or stamp collecting (E. Rutherford)

We study artifacts produced by humans

Computer science is no more about computers than astronomy is about telescopes. (E. Dijkstra)

Science vs. Engineering

Science

- Physics
- Chemistry
- Biology
- Mathematics
- Geography

Engineering

- Civil Engineering
- Electronics
- Chemistry and Materials
- Electro-Mechanical Engineering
- Computer Science
- Software Engineering

Mathematical Origins

Turing Machines

- Halting problem

Algorithmic Complexity

- $P = \n P$ NP

Compilers

- Chomsky hierarchy

Databases

- Relational model

Gödel theorem: consistency of the system is not provable in the system.

⇒ A complete and consistent set of axioms for all of mathematics is impossible
1. Research Methods

Engineering Origins

Computer Engineering
- Moore’s law: “the number of transistors on a chip will double about every two years”
 + Self-fulfilling prophesy
- Hardware technology
 + RISC vs. CISC
 + MPSoC
- Compiler optimization
 + peephole optimization
 + branch prediction

Empirical Approach
- Tom De Marco: “you cannot control what you cannot measure”
 + quantify
 + mathematical model
- Pareto principle
 + 80% - 20% rule
 (80% of the effects come from 20% of the causes)

Premise: The sun has risen in the east every morning up until now.
Conclusion: The sun will also rise in the east tomorrow. … Or Not?

Influence of Society

- Lives are at stake
 (e.g., automatic pilot, nuclear power plants)
- Corporate success or failure is at stake
 (e.g., telephone billing, VTM launching 2nd channel)
- Huge amounts of money are at stake
 (e.g., Ariane V crash, Denver Airport Baggage)

Software became Ubiquitous
… its not a hobby anymore

Interdisciplinary Nature

"Hard" Sciences

Science
Engineering

Computer Science

"Soft" Sciences
Economics
Psychology
Sociology

Action Research

The Oak Forest
Robert Zünd - 1882

Objective ↔ Subjective

- Plato’s cave

- Scientific Paradigm (Kuhn)
 + Dominant paradigm / Competing paradigms / Paradigm shift
 - Normal science vs. Revolutionary science

1. Research Methods

Dominant view on Research Methods

Physics

("The" Scientific method)
- form hypothesis about a phenomenon
- design experiment
- collect data
- compare data to hypothesis
- accept or reject hypothesis
 + ... publish (in Nature)
- get someone else to repeat experiment (replication)

Medicine

(Double-blind treatment)
- form hypothesis about a treatment
- select experimental and control groups that are comparable except for the treatment
- collect data
- commit statistics on the data
- treatment ⇒ difference (statistically significant)

Cannot answer the “big” questions
... in timely fashion
- smoking is unhealthy
- climate change
- darwin theory vs. intelligent design
- ...
- agile methods

Experiment principles

THEORY

Experiment objective

Cause
construct

cause-effect
construct

Effect
construct

OBSERVATION

Treatment

outcome
construct

Outcome

Independent variable

Dependent variable

Experiment operation

"Boring to read" syndrome

• Too much focus on proper research procedure
1. Research Methods

Research Methods in Computer Science

Different Sources
- Gordana Dodif-Crnkovic, “Scientific Methods in Computer Science”

Case studies - Spectrum

Case studies are widely used in computer science

⇒ “studying a case” vs. “doing a case study”

1. Feasibility study
 - is it possible?

2. Pilot Case, Demonstrator
 - is it appropriate?

3. Comparative study
 - is it better?

4. Observational Study
 - What is "it"?

5. Literature survey
 - what is known/unknown?

6. Formal Model
 - underlying concepts?

7. Simulation
 - what if?

Feasibility Study

Here is a new idea, is it possible?

- Metaphor: Christopher Columbus and western route to India

- Is it possible to solve a specific kind of problem ... effectively?
 - computer science perspective (P = NP, Turing test, ...)
 - engineering perspective (build efficiently; fast — small)
 - economic perspective (cost effective; profitable)

- Is the technique new / novel / innovative?
 - compare against alternatives
 - See literature survey; comparative study

- Proof by construction
 - build a prototype
 - often by applying on a "CASE"

- Conclusions
 - primarily qualitative; "lessons learned"
 - quantitative
 - economic perspective: cost - benefit
 - engineering perspective: speed - memory footprint
1. Research Methods

Pilot Case (a.k.a. Demonstrator)

Here is an idea that has proven valuable; does it work for us?

- Metaphor: Portugal (Amerigo Vespucci) explores western route

- **Proven valuable**
 - accepted merits (e.g. “lessons learned” from feasibility study)
 - there is some (implicit) theory explaining why the idea has merit

- **Does it work for us**
 - context is very important

- **Demonstrated on a simple yet representative “CASE”**
 - “Pilot case” ≠ “Pilot Study”

- **Proof by construction**
 - build a prototype
 - apply on a “case”

- **Conclusions**
 - primarily qualitative; “lessons learned”
 - quantitative; preferably with predefined criteria
 - compare to context before applying the idea!!

2. Research Methods

Comparative Study

Here are two techniques, which one is better?

- for a given purpose!
 - (Not necessarily absolute ranking)

- Where are the differences? What are the tradeoffs?

- **Criteria check-list**
 - predefined
 - should not favor one technique
 - qualitative and quantitative
 - qualitative: how to remain unbiased?
 - quantitative: represent what you want to know?
 - Criteria check-list should be complete and reusable!
 - If done well, most important contribution (replication!)
 - See literature survey

- **Score criteria check-list**
 - Often by applying the technique on a “CASE”

- **Compare**
 - typically in the form of a table
1. Research Methods

Observational Study [Ethnography]

Understand phenomena through observations
- Metaphor: Diane Fossey “Gorillas in the Mist”

- systematic collection of data derived from direct observation of the everyday life
 - phenomena is best understood in the fullest possible context
 - observation & participation
 - interviews & questionnaires

- Observing a series of cases “CASE”
 - observation vs. participation?

- example: Action Research
 - Action research is carried out by people who usually recognize a problem or limitation in their workplace situation and, together, devise a plan to counteract the problem, implement the plan, observe what happens, reflect on these outcomes, revise the plan, implement it, reflect, revise and so on.

- Conclusions
 - primarily qualitative: classifications/observations/...

Literature Survey

What is known? What questions are still open?

Systematic

- “comprehensive”
 - precise research question is prerequisite
 - defined search strategy (rigor, completeness, replication)
 - clearly defined scope
 - criteria for inclusion and exclusion
 - specify information to be obtained
 - the “CASES” are the selected papers

- outcome is organized

<table>
<thead>
<tr>
<th>classification</th>
<th>taxonomy</th>
<th>conceptual model</th>
</tr>
</thead>
<tbody>
<tr>
<td>table</td>
<td>tree</td>
<td>frequency</td>
</tr>
</tbody>
</table>
1. Research Methods

Literature survey - example

Formal Model

How can we understand/explain the world?
- make a mathematical abstraction of a certain problem
 + analytical model, stochastic model, logical model, re-write system, ...
 + often explained using a "CASE"
- prove some important characteristics
 + based on inductive reasoning, axioms & lemma’s, ...

Motivate
- which factors are irrelevant (excluded) and which are not (included) ?
- which properties are worthwhile (proven) ?
 - See literature survey

1. Research Methods
Simulation

What would happen if ...?

- study circumstances of phenomena in detail
 + simulated because real world too expensive; too slow or impossible
- make prognoses about what can happen in certain situations
 + test using real observations, typically obtained via a “CASE”

Motivate

- which circumstances are irrelevant (excluded) and which are not (included)?
- which properties are worthwhile (to be observed/predicted)?
 - See literature survey

Examples

- distributed systems (grid); network protocols
 + too expensive or too slow to test in real life
- embedded systems — simulating hardware platforms
 + impossible to observe real clock-speed / memory footprint / ...
 - Heisenberg uncertainty principle

Case Study Research

Introduction

- Origins of Computer Science
- Research Philosophy

Research Methods

1. Feasibility study
2. Pilot Case
3. Comparative study
4. Observational Study [a.k.a. Etnography]
5. Literature survey
6. Formal Model
7. Simulation

Conclusion

- Studying a Case vs. Performing a Case Study
 - Proposition
 - Unit of Analysis
 - Threats to Validity

Sources

Case studies - Revisited

Case studies are widely used in computer science

= “studying a case” vs. “doing a case study”

7. Simulation: test prognoses with real observations obtained via a “CASE”

6. Formal Model
 - often explained using a “CASE”

5. Literature survey
 - “CASES” = selected papers

4. Observational Study
 - Observing a series of “CASES”

3. Comparative study
 - Score criteria check-list; often by applying on a “CASE”

2. Pilot Case, Demonstrator
 - Demonstrated on a simple yet representative “CASE”

1. Feasibility study
 - Proof by construction; often by applying on a “CASE”

Spectrum of cases

<table>
<thead>
<tr>
<th>Toy-example</th>
</tr>
</thead>
<tbody>
<tr>
<td>accepted teaching vehicle</td>
</tr>
<tr>
<td>“textbook example”</td>
</tr>
<tr>
<td>simple but illustrates relevant issues</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exemplar</th>
</tr>
</thead>
<tbody>
<tr>
<td>real-life example</td>
</tr>
<tr>
<td>industrial system, open-source system</td>
</tr>
<tr>
<td>context is difficult to grasp</td>
</tr>
</tbody>
</table>

Case

- Mining Software Repositories Challenge.
 - [Yearly workshop where research tools compete against one another on a common predefined case.]

Community case

- Benchmark
 - approved by community
 - known context
 - “planted” issues

Sources

Case study — definition

A case study is an empirical inquiry that investigates a contemporary phenomenon within its real-life context, especially when the boundaries between the phenomenon and context are not clearly evident.

[Robert K. Yin. Case Study Research: Design and Methods; p. 13]

- empirical inquiry: yes, it is empirical research
- contemporary: (close to) real-time observations
 + incl. interviews
- boundaries between the phenomenon and context not clear
 + as opposed to “experiment”

Case Study — Counter evidence

- many more variables than data points
- multiple sources of evidence; triangulation
- theoretical propositions guide data collection
 (try to confirm or refute propositions with well-selected cases)

Misunderstanding 2: Generalization

One cannot generalize on the basis of an individual case; therefore the case study cannot contribute to scientific development.

[Bent Flyvbjerg, “Five Misunderstandings About Case Study Research.”]

- Understanding
 + The power of examples
 + Formal generalization is overvalued
 - dominant research views of physics and medicine
- Counterexamples
 + one black swan falsifies “all swans are white”
 - case studies generate deep understanding; what appears to be white often turns out to be black
- sampling logic vs. replication logic
 + sampling logic: operational enumeration of entire universe
 - use statistics: generalize from “randomly selected” observations
 + replication logic: careful selection of boundary values
 - use logic reasoning: presence of absence of property has effect

Sampling Logic vs. Replication Logic

- random selection
 ⇒ generalize for entire population
- selection of (boundary) value
 ⇒ understand differences
 • propositions
 • units of analysis
Research questions for Case Studies

Existence:
- Does X exist?

Description & Classification
- What is X like?
- What are its properties?
- How can it be categorized?
- How can we measure it?
- What are its components?

Descriptive-Comparative
- How does X differ from Y?

Frequency and Distribution
- How often does X occur?
- What is an average amount of X?

Descriptive-Process
- How does X normally work?
- By what process does X happen?
- What are the steps as X evolves?

Causality
- What causes X?
- What effect does X have on Y?
- Does X cause Y?
- Does X prevent Y?

Causality-Comparative
- Does X cause more Y than does Z?
- Is X better at preventing Y than is Z?
- Does X cause more Y than does Z under one condition but not others?

Design
- What is an effective way to achieve X?
- How can we improve X?

Units of Analysis

What phenomena to analyze
- depends on research questions
- affects data collection & interpretation
- affects generalizability

Possibilities
- individual developer
- a team
- a decision
- a process
- a programming language
- a tool

Design in advance
- avoid “easy” units of analysis
 - + cases restricted to Java because parser
 - - Is the language really an issue for your research question?
 - + report size of the system (KLOC, # Classes, # Bug reports)
 - - Is team composition not more important?

Example: Clone Detection, Bug Prediction
- the tool/algorithm
- Does it work?
- the individual developer
- How/why does he produce bugs/clone?
- about the culture/process in the team
- How does the team prevent bugs/clone?
- about the programming language
- How vulnerable is the programming language towards clones/bugs?
 (COBOL vs. AspectJ)

Threats to Validity (Experiments)

Experiment objective

Theory
- Cause construct
- Effect construct

Observation
- Treatment
- Outcome

Experiment operation

1. Conclusion validity
2. Internal validity
3. Construct validity
4. External validity

Proposition (a.k.a. Purpose)

Where to expect boundaries?
- Thorough preparation is necessary!
- You need an explicit theory.

<table>
<thead>
<tr>
<th>Exploratory</th>
<th>Confirmatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploratory case studies are used as initial investigations of some phenomena to derive new hypotheses and build theories. (*)</td>
<td>Confirmatory case studies are used to test existing theories. The latter are especially important for refuting theories: a detailed case study of a real situation in which a theory fails may be more convincing than failed experiments in the lab. (**)</td>
</tr>
</tbody>
</table>

Threats to validity (Case Studies)

- Source: Runeson, P. and Höst, M. 2009. Guidelines for conducting and reporting case study research in software engineering.

1. Construct validity
 - Do the operational measures reflect what the researcher had in mind?

2. Internal validity
 - Are there any other factors that may affect the results?
 - Mainly when investigating causality!

3. External validity
 - To what extent can the findings be generalized?
 - Precise research question & units of analysis required

4. Reliability
 - To what extent is the data and the analysis dependent on the researcher (the instruments, …)

Other categories have been proposed as well
- credibility, transferability, dependability, confirmability

Threats to validity — Examples (1/2)

1. Construct validity
 - Do the operational measures reflect what the researcher had in mind?
 - Time recorded vs. time spent
 - Execution time, memory consumption, …
 + noise of operating system, sampling method
 - Human-assigned classifiers (bug severity, …)
 + risk for “default” values
 - Participants in interviews have pressure to answer positively

2. Internal validity
 - Are there any other factors that may affect the results?
 - Were phenomena observed under special conditions
 + in the lab, close to a deadline, company risked bankruptcy, …
 + major turnover in team, contributors changed (open-source), …
 - Similar observations repeated over time (learning effects)

Threats to validity — Examples (2/2)

3. External validity
 - To what extent can the findings be generalized?
 - Does it apply to other languages? other sizes? other domains?
 - Background & education of participants
 - Simplicity & scale of the team
 + small teams & flexible roles vs. large organizations & fixed roles

4. Reliability
 - To what extent is the data and the analysis dependent on the researcher (the instruments, …)
 - How did you cope with bugs in the tool, the instrument?
 - Classification: if others were to classify, would they obtain the same?
 - How did you search for evidence in mailing archives, bug reports, …

Threats to validity = Risk Management

No experimental design can be “perfect”
... but you can limit the chance of deriving false conclusions

- manage the risk of false conclusions as much as possible
 - likelihood
 - impact

- state clearly what and how you alleviated the risk (replication!)
 - construct validity
 - precise metric definitions
 - GQM paradigm
 - internal & external validity
 - report the context consciously
 + Reliability
 - bugs in tools: testing, usage of well-known libraries, …
 - classification: develop guidelines & others repeat classification
 - search for evidence (mailing archives, bug reports, …):
 have an explicit search procedure
1. Research Methods

Introduction
• Origins of Computer Science
• Research Philosophy

Research Methods
• 1. Feasibility study
• 2. Pilot Case
• 3. Comparative study
• 4. Observational Study [a.k.a. Etnography]
• 5. Literature survey
• 6. Formal Model
• 7. Simulation

Conclusion
• Studying a Case
• vs. Performing a Case Study
 + Proposition
 + Unit of Analysis
 + Threats to Validity

Studying a case vs. Performing a case study

1. Questions
• most likely "How" and "Why"; also sometimes "What"

2. Propositions (a.k.a. Purpose)
• explanatory: where to look for evidence
• exploratory: rationale and direction
 + example: Christopher Columbus asks for sponsorship
 - Why three ships (not one, not five)?
 - Why going westward (not south?)
• role of "Theories"
 + possible explanations (how, why) for certain phenomena
 => Obtained through literature survey

3. Unit(s) of analysis
• What is the case?

4. Logic linking data to propositions
 + 5. Criteria for interpreting findings
 • Chain of evidence from multiple sources
 • When does data confirm proposition? When does it refute?

Threats to validity

---Low hanging fruit---