Lecture #2 for
Computer Tools for Engineers
Today’s agenda:

• Review from last lecture

• Miscellaneous

• Mathcad
 – Variables (including index variables)
 – Basic calculations and functions
 – Vectors and matrices
 – Graphing
 – Solve blocks and root finding
 – Symbolic math

• Problem solving with Mathcad
 – Generating random numbers
 – Graphing one vector against another
 – Break-even analysis for economic modeling
 – Least-squares fit for trend analysis
 – Calculus - derivatives and integrals

Assignment #1 problems
Review from last week:

• I assume that EVERYONE…
 – Has read the ASEE paper on the class homepage
 – Has worked, or is working, through the Mathcad tutorial
 – Can access material posted on the class homepage

• If any of the above is not true
 – SEE ME OR A TA !!!
Review from last week: (continued)

• URL: http://www.csee.usf.edu/~christen/class7/class7.html
Review from last week: (continued)

• The goal of this course is ________________________________

• To achieve this goal, you will learn
 – ____________________ for ____________ crunching
 – ____________________ for ____________ crunching
 – ____________________ for ____________ solving
 – ____________________ for ____________ problems

• Over a 10 year career, about how much more money will an engineer make over a business major?
 – ______________________________________

• For repetitive calculations, ________________ is a good tool to use

• Not being able to use common tools makes you ________________
Review from last week: (continued)

• A DOS directory is the same things as a Windows ____________

• The DOS **md** command is used to ______________________

• The DOS **cd** command is used to _______________________

• The “\” directory is the _______________ directory

• “c:\” refers to the ____________________________

• “**copy c:\test\x.dat c:\usf\y.txt**” does ______________

• To generate or change a text file, one can use ______________

• To “unzip” a .**zip** file use ___________________________
Review from last week: (continued)

- Student exercise #1

Create two directories named usf1 and usf2 on floppy disk. Copy autoexec.bat (found on the root directory of the hard drive) to each of the two created directories. Change to the usf1 directory and list the contents of this directory.
Review from last week: (continued)

• Solution to student exercise #1

 md a: \usf1
 md a: \usf2
 copy c: \autoexec.bat a: \usf1 \autoexec.bat
 copy c: \autoexec.bat a: \usf2 \autoexec.bat
 cd a: \usf1
 dir
Miscellaneous:

• Quiz #1 is next week
 – Two randomly chosen problems directly from assignment #1
 – Quiz given in lab sections and is “hands on”
 – Closed book (only Mathcad may be open)

• Everyone knows where to find assignment #1, right!?!?!?!

• You will need to bring
 – Diskette (label with your name!)
 – Big envelope to submit diskette

} +2 pts on quiz #1 for doing this!
Miscellaneous: (continued)

My Fall 1999 office hours are **Monday** through **Thursday** **4:00pm** to **5:00pm**. Appointments are always possible. I am best reached via email at christen@csee.usf.edu.

TA OFFICE HOURS

- Li Zhou - MW 5:30 to 6:30, TH - 5:40 to 6:40
- Sujit Vaidya - F 11:00 to 2:00
Miscellaneous: (continued)

• How should I take notes?
 – Most important is to pay attention and understand in “real time”. You can take notes by overhead # (upper right corner) and then later refer to a print-out of the class overheads.

• How should I best prepare for this class?
 – The best advice is to STAY AHEAD of the curve. Your class and lab time will be much more productive. One hour of “stay ahead” is worth two to ten hours of “catch-up”. Think about it!

• Why do you make this class so hard?
 – I work very hard to make this class EASY. Please tell me what I can do to make your learning easier... anything except dropping content (“dumbing down”), which is not fair to you, me, or your future employer or graduate school.
Mathcad:

- Mathcad is…
 - A mathematics package by Mathsoft (www.mathsoft.com)
 - Current version is 8.0 and we have 8.0 in the labs!
 » Cost is about $130.00
 - Hardest thing to learn is “what to type”
Mathcad: (continued)

• Variables
 – Regular variable (e.g., x, y)
 – Range variable (e.g., i, j)
 – Vector (e.g., yearᵢ)

Examples:

\[
\begin{align*}
 x & := 3 \\
 y & := x \\
 i & := 1 \ldots x \\
 j & := 1, 1.1 \ldots y \\
 \text{year}_i & := i \times 2
\end{align*}
\]
Mathcad: (continued)

- Basic calculations
 - +, -, *, /, ^
 - Sum and product of a vector (subscripted variable)
 - Square root, etc. from calculator pallet
 - Integrate and differentiate from calculus pallet

Examples:

```plaintext
x := 3
y := x + 6
y := y + \sqrt{y}
y = 12
i := 1 \ldots 5
\sum_{i} i = 15
```

Two kinds of equal used here, := for assignment and = for “show result”
Mathcad: (continued)

• Functions
 – Lots of built-in functions
 – Or write your own, \(f(x) = \) calculations in terms of \(x \)

Examples:

\[
f(x) := 2 * x \\
y := 3 \\
f(4) = 8 \\
f(y) = 6 \\
\log(1000) = 3
\]

Note \(x \) used here, but "invoked" with \(y \) here… this is how a function works!
Mathcad: (continued)

• Functions
 – Access built-in functions via *Insert / Choose function* menu option
 – Can also use HELP to find a function

Example:

How to generate a random number? Use help!
Mathcad: (continued)

• Vectors and matrices
 – A vector is a one-dimensional array
 – A matrix is a two dimensional array

Examples:

\[
\begin{align*}
 i & := 0 \ldots 3 \\
 j & := 0 \ldots 2 \\
 x_i & := i \times 2 \\
 z_{i,j} & := i + j
\end{align*}
\]
Mathcad: (continued)

- Vectors and matrices
 - Can also enter via *Math / matrices* menu option
Mathcad: (continued)

• Graphing
 – Can graph a function
 – Can graph a vector (or a matrix for a 3D graph)
 – Can graph a vector against another vector

• Procedure for graphing
 – Define a function or vector
 – Define a range variable
 – Select \textit{Graphics / Create X-Y Plot} from menu options
 – Put range variable on x-axis
 – Put function or vector on y-axis
 – Poof… you have a graph 😊
Mathcad: (continued)

- Solve blocks
 - Can solve for N unknowns in N equations

Example:

\[
\begin{align*}
 x &:= 1 \\
 y &:= 1 \\
 2x + 3y &= 7 \\
 3x - y &= 5
\end{align*}
\]

Given and Find pair

A “guess” (this is needed!)

Note use of constrained equals (Ctrl =)
Mathcad: (continued)

- Root finding
 - Can find roots of an equation in (at least) 3 ways
 > By symbolic factoring
 > Using the root function
 > Graphing to visually find the roots

Example:

\[f(x) := x^2 - 7x + 12 \]

\[\text{root}(x, f(x)) = 3 \]

But, what about the other root?
Mathcad: (continued)

- Symbolic math (math without numbers)
 - Evaluate
 - Simplify
 - Expand
 - Factor
 - Differentiate
 - Integrate
 - Solve for variable
 - Matrix operations
 - Transforms (FFT, etc.)

Woah!
Mathcad: (continued)

- Symbolic math

Examples:

\[f(x) := x^2 - 7x + 12 \]

\[f(x) = \binom{4}{3} \]
Problem Solving using Mathcad:

- General strategy
 - Define the problem (define the inputs and outputs)
 - Gather information (the inputs)
 - Generate and evaluate potential solutions ("method")
 - Refine and implement the solution
 - Verify the solution through testing

Inputs → Method → Outputs

USE THE RIGHT TOOL
Mathcad Problem #1:

- Create a vector that contains 1000 random integers between -5 and 5
 - Find min, max, and mean of the numbers
Mathcad Problem #2:

• Combine two electrical signals on an XY plot
 – This is an example of how a TV works

• The signals are:
 – \(X_i = \sin(\pi i/25) \), \(i = 0 \ldots 1000 \)
 – \(Y_i = \cos(\pi i/15) \), \(i = 0 \ldots 1000 \)
Mathcad Problem #3:

- Break-even analysis
 - Break-even occurs where costs equals revenues
 - Assume cost to produce a bird house is $1500 + $6.00\times b$
 - Assume price (revenue) of a bird house is 8.00
 - How many bird houses must we sell to break-even?
Mathcad Problem #4:

- Least-squares fit for trend analysis
 - Average daily oil production for 12 months is…
 70, 64, 65, 60, 68, 58, 54, 54, 58, 48, 49, 53
 - What is the trend and (if negative) when will the oil run out?
Mathcad Problem #4: (continued)

- What is a least-squares fit?
 - Fitting a line to data such that deviations are as small as possible
Mathcad Problem #5:

- Calculus - derivatives
 - Evaluating a derivative at a point

 \[f(x) = x^3 + e^x \] what is \(\frac{df(x)}{dx} \) at \(x = 3 \)?

 - Symbolic differentiation

 What is \(\frac{df(x)}{dx} \) (the derivative function)?
Mathcad Problem #5: (continued)

• Calculus - integrals

• Solve for (indefinite integral) ...

\[\int x \cdot e^x \, dx \]

• Determine the distance in feet that a free-falling object falls in 5 sec
 – acceleration due to gravity… \(g = 32.2 \text{ ft/sec}^2 \)
 – velocity… \(v(t) = g \cdot t \)
 – distance… \(d = \text{integral of } v(t) \)
End-of-Mathcad

• Mathcad lab is this week

• Mathcad quiz *is next week*
 – *Exactly 60 minutes to complete two problems*

• No lecture next week (Labor Day holiday)
 – Excel spreadsheet begins in two weeks