CIS 6930/4930 Computer Aided Verification

Temporal Logics

Hao Zheng
Dept. of Computer Science & Eng.
Univ. of South Florida
Temporal Logics

- A formalism to describes properties of paths in the model of reactive systems.
- First order logic augmented with temporal operators.
- Time is implicit.
 - Explicit in real-time temporal logics.
- There exist different temporal logics.
 - With different view of underlying computation.
- CTL* (CTL) views computation of a system as a tree.
 - System can move into different future.
- LTL views computation of a system as a set of paths.
 - System has only one direction into the future.
Models of Computations

State transition graph
Kripke Structure

Computation tree

Paths

...
Computational Tree Logic CTL*

- To describe paths from a given state.
- Path quantifiers:
 - A: for all computation paths from a state.
 - E: for some computation path(s) from a state.
- Linear temporal operators: describe properties along a path.
 - $Gp \rightarrow p$ holds in every state on the path.
 - $Fp \rightarrow p$ holds in some state on the path.
 - $Xp \rightarrow p$ holds in the second state of the path
 - $pUq \rightarrow p$ holds until q holds in some state on the path.
 - pWq – similar to U, but q does not need to hold.
State and Path Formulas

- Path formulas hold along a path.
 - If f is a state formula, it is also a path formula.
 - If f and g are path formulas, so are boolean combinations of f and g, $\text{X} f$, $\text{F} f$, $\text{G} f$, and $f \text{U} g$.

- State formulas hold at a state.
 - If p is an atomic proposition, then p is a state formula.
 - If f and g are state formulas, so are boolean combinations of f and g.
 - If f is a path formula, $\text{A} f$ and $\text{E} f$ are state formulas.

- CTL* formulae are state formulas generated by the above rules.
Semantics: Path Formulas

• Defined w.r.t a Kripke structure M.
• If f is a path formula, $M, \pi \models f$ means f holds along path π.
• Definitions:
 - $M, \pi \models f \iff f$ is a state formula, s is the first state of M, $s \models f$ holds if p is an atomic proposition and $p \in L(s)$.
 - $M, \pi \models \neg f \iff f$ is a path formula, and $M, \pi \models f$ does not hold.
 - $M, \pi \models f \lor g \iff f$ and g are path formulas, and $M, s \models f$ or $M, s \models f$.
 - $M, \pi \models f \land g \iff f$ and g are path formulas, and $M, s \models f$ and $M, s \models f$.
 - $M, \pi \models X f \iff f$ is a path formula, and $M, \pi^1 \models f$.
 - $M, \pi \models F f \iff f$ is a path formula, and $M, \pi^k \models f$ for some $k \geq 0$.
 - $M, \pi \models G f \iff f$ is a path formula, and $M, \pi^k \models f$ for all $k \geq 0$.
 - $M, \pi \models f U g \iff ...$
Semantics: State Formulas

- Defined w.r.t a Kripke structure M.
- If f is a state formula, $M, s \models f$ means f holds at state s of M.
- Definitions:
 - $M, s \models p \iff$ if p is an atomic proposition and $p \in L(s)$.
 - $M, s \models \neg f \iff M, s \not\models f$ does not hold.
 - $M, s \models f \lor g \iff M, s \models f$ or $M, s \models f$.
 - $M, s \models f \land g \iff M, s \models f$ and $M, s \models f$.
 - $M, s \models A f \iff f$ is a path formulas, and for all paths π from s such that $M, \pi \models f$.
 - $M, s \models E f \iff f$ is a path formula, and there is a path π from s such that $M, \pi \models f$.
Equivalences

• Not all operators are essential to express a property.
 - \(f \land g \equiv \neg(\neg f \lor \neg g) \)
 - \(A f \equiv \neg E (\neg f) \)
 - \(G f \equiv \neg F (\neg f) \)
 - \(F f \equiv (true \cup f) \)
 - \(F(f \lor g) \equiv Ff \lor Fg \)
 - What about \(F(f \land g) \equiv Ff \land Fg \)?
 - \(G(f \land g) \equiv Gf \land Gg \)
 - What about \(G(f \lor g) \equiv Gf \lor Gg \)?
CTL and LTL

• CTL* is more expressive, but expensive for verification.
• Two useful sublogics of CTL*: CTL and LTL.
• CTL is a restricted subset of CTL* where temporal operators must be immediately preceded by a path quantifier.
 – Basic operators: $AG, AF, AX, A(U), EG, EF, EX, E(U)$.
 – Example: $AG(EF f)$
• LTL consists of formulas of the form Af defined as follows:
 – If p is an atomic formula, the p is a path formula.
 – if f and g are path formulas, so are boolean combinations of f and g, Xf, Ff, Gf, and $f U g$.
 – Example: $A(FG f)$
Interpretation of CTL Operators

\[AG_f \text{ is true} \]

\[EG_f \text{ is true} \]
Interpretation of CTL Operators

$AF \phi$ is true

$EF \phi$ is true
Interpretation of CTL Operators

$\text{AX} f$ is true

$\text{EX} f$ is true
Interpretation of CTL Operators

A(\(f\ U\ g\)) is true

E(\(f\ U\ g\)) is true
A Sufficient Set of CTL Operators

• Any CTL formulas can be expressed using \(\text{EX} \), \(\text{EG} \), and \(\text{EU} \).

 \[\begin{align*}
 \text{AX} f &= \neg \text{EX} \neg f \\
 \text{AG} f &= \neg \text{EF} \neg f = \neg \text{E}(\text{true} \ U \neg f) \\
 \text{AF} f &= \neg \text{EG} \neg f \\
 \text{A} (f \ U g) &= (\neg \text{EG} \neg g) \land (\neg \text{E} (\neg g \ U (\neg f \land \neg g)) \\
 \text{What does } \text{AG}(\text{AF} f) \text{ mean?}
 \end{align*} \]
LTL Semantics Example

\[M, s_0 \models p \land q \]
\[M, s_0 \models \mathbf{X} r \]
\[M, s_0 \models \mathbf{G} \neg(p \land r) \]
\[M, s_0 \models \mathbf{G} (\mathbf{F} p) \]
A Sufficient Set of LTL Operators

• \{U, X\}, \{R, X\}, or \{W, X\} is sufficient.
 – \(Gf \equiv \neg F \neg f\)
 – \(\neg Xf \equiv X \neg f\)
 – \(f R g \equiv \neg (\neg f \ U \ \neg g)\)
 – \(f U g \equiv f \ W g \land Fg\)
 – \(Ff \equiv \text{true } U f\)

• Examples: \(GFf\) and \(FGf\)?
CTL*, CTL, and LTL

- CTL formula specifies a set of states.
- A LTL formula specifies a set of paths.
- $\text{AG}(\text{EF}\ f)$ is not expressible in CTL.
- $\text{AG(EF}\ f)$ is not expressible in LTL.
Safety and Liveness Properties

- Safety: nothing bad should happen.
- Liveness: something good eventually happens.
- Example: a mutual exclusion element.
Fairness

• Fairness means certain properties happen infinitely often during computation.
 – An arbiter cannot ignore some requests forever.
 – A communication channel cannot lose message all the time.

• Models may contain unfair computations.
 – Non-deterministic models of physical computating systems.
 – Wrong implementations of fairness requirements.

• Fairness constraints eliminate the unfair computations.
 – Unfairness introduced to simplify modeling.

• Fair computations satisfy fairness constraints infinitely often.
Fair Semantics

- Fairness constraints are expressed as sets of states that hold infinitely often on computations.

- CTL* semantics with fairness
 - \(M, s \models_{F} p \leftrightarrow \) if there is a fair path from \(s \) and \(p \in L(s) \).
 - \(M, s \models_{F} A f \leftrightarrow f \) is a path formulas, and for all fair paths \(\pi \) from \(s \) such that \(M, \pi \models f \).
 - \(M, s \models_{F} E f \leftrightarrow f \) is a path formula, and there is a fair path \(\pi \) from \(s \) such that \(M, \pi \models f \).

- CTL – will discuss it later.

- LTL – fairness can be easily expressed and incorporated with verification.
 - Ex.: \(GF p \), or \(GF p \rightarrow GF q \)