Introduction

- Model Checking
 - Exhaustive verification.
 - Difficult to scale (state explosion).

- Bounded model checking (BMC) is targeted to find bugs, not to achieve the complete correctness proof.
 - Finds bugs in a bounded number of executions.
 - Can discover shallow bugs quickly.
 - Based on the latest advances in Boolean satisfiability solving.
 - State explosion is alleviated, but runtime may be a serious problem.
BMC vs SMC

- Both operate on Boolean manipulations.
- BMC uses SAT solving while SMC uses OBDDs.
 - Both are exponential procedures (time or space).
- BMC can better solve some problems that cannot be solved by SMC, and vice versa.
- BMC cannot prove the absence of errors in large cases.
 - May require a very large bound k.
Check if the circuit satisfies $AG\neg q$.

Initial state: $x=0$, $y=0$.
Circuit State after Cycle 1

\[w^0 = 1 \]
\[y^0 = 0 \]
\[x^0 = 0 \]
\[q^0 = 0 \]
\[y^1 = 1 \]
\[x^1 = 0 \]
Circuit State after Cycle 2

$q = 1$ if $w = 1$ in cycle 1 and $w = 0$ in cycle 2.

A counter-example to $\text{AG}\neg q$ is a three state sequence.
Big Picture of Bounded Model Checking

Comb. Logic

Comb. Logic

Comb. Logic

Comb. Logic

I

I

I

I

S

S

S

S

O

O

O

O
How BMC Works

$k = 0$

Stop

- **Resource exhausted**

BMC(\(M, \neg f, k\))

SAT

- **fail**

UNSAT

- **k++**

k \geq CT

Yes

- **pass**
A k-bounded path is a sequence of k state transitions.

A finite path is infinite if it has a back loop.

A (k, l)-loop is a k-bounded path ρ such that $R(s_k, s_l)$ holds.

A path ρ is a k-loop if there exists $0 \leq l \leq k$ such that ρ is a (k, l)-loop.
Bounded Semantics of LTL Formulas

Let $\rho |\models_k f$ denote the truth of the LTL formula f over the $k-$bounded path ρ.

Evaluate f only in the first $k + 1$ states on ρ.

Let $\rho(i)$ denote the i^{th} state on ρ.

Let $\rho |\models^i_k f$ denote the truth of f over the path from state $\rho(i)$ to $\rho(k)$.

If a path ρ is a $k-$loop,

$$\rho |\models_k f \iff \rho |\models f$$
Bounded Semantics of LTL Formulas (2)

\(\rho \models_k f \iff \rho \models^0_k \) where

\(\rho \models^i_k p \iff p \in L(\rho(i)) \)

\(\rho \models^i_k \neg p \iff p \notin L(\rho(i)) \)

\(\rho \models^i_k f \land g \iff \rho \models^i_k f \text{ and } \rho \models^i_k g \)

\(\rho \models^i_k f \lor g \iff \rho \models^i_k f \text{ or } \rho \models^i_k g \)

\(\rho \models^i_k G f \iff \text{false} \)

\(\rho \models^i_k F f \iff \exists i \leq j \leq k. \rho \models^j_k f \)

\(\rho \models^i_k X f \iff i < k \text{ and } \rho \models^{i+1}_k f \)

\(\rho \models^i_k f U g \iff \exists i \leq j \leq k. \rho \models^j_k f \text{ and } \forall i \leq n \leq j. \rho \models^n_k f \)
Let $M \models_k f$ denote a k–bounded model checking problem for the LTL formula f.

Formula f is evaluated on all k–bounded path.

Let f be a LTL formula and ρ a path. $\rho \models_k f \Rightarrow \rho \models f$.

If for each ρ in M such that $\rho \models_k f$, then $M \models f$ holds.

If there is a ρ in M such that $\rho \models_k f$, then $M \models \neg f$ does not hold.

$M \models f \iff \exists k \geq 0. M \models_k f$.

There always exists a k such that the result of bounded model checking is equivalent to that of the complete one.
An BMC Example

- $M \models \neg (a \land b)$.
- BMC checks if there is a bounded path on which $F(a \land b)$ holds.
An BMC Example (2)

\[M \models_{k=1} G \neg (a \land b). \]

\[M \models_{k=2} G \neg (a \land b). \]

\[k = 1 \]
\[k = 2 \]
Bounded Model Checking: Overview

System Model

Specification in LTL

BMC

Propositional formula

SAT Solver

Specification violation

Satisfied

Specification holds

Unsatisfied
Boolean Encoding of Bounded Model Checking

Given a M, an LTL formula f and a bound k, generate a Boolean formula $[[M, f]]_k$.

Encoding the constraints on k–paths in M such that these k–paths, if satisfiable, are witnesses of f.

Three components of $[[M, f]]_k$:

- $[[M]]_k$: all k–paths in M.
- $[[f]]_k$: encoding of f on k–paths.
- $l[[f]]_k$: encoding of f on k–loops.
Encoding of $[M]_k$

Unfolding of the transition relation

$$[M]_k = I(s_0) \land \bigwedge_{i=0}^{k-1} R(s_i, s_{i+1}).$$

$$\bigwedge_{i=0}^{k-1} R(s_i, s_{i+1}) : \text{encoding all } k\text{-paths of } M.$$

$I(s_0) : \text{constraints on the } k\text{-paths from the initial states.}$
Encoding of f on k-Paths $[f]_k$

- **Inductive case:** $\forall i \leq k$

 \[
 [p]_k^i \equiv p(s_i) \\
 [f \land g]_k^i \equiv [f]_k^i \land [g]_k^i \\
 [Gf]_k^i \equiv [f]_k^i \land [Gg]_k^{i+1} \\
 [f \lor g]_k^i \equiv [f]_k^i \lor [g]_k^i \\
 [Ff]_k^i \equiv [f]_k^i \lor [Ff]_k^{i+1} \\
 [f \lor g]_k^i \equiv [f]_k^i \lor ([f]_k^i \land [f \lor g]_k^{i+1}) \\
 [Xf]_k^i \equiv [f]_k^{i+1}
 \]

- **Base case:**

 \[
 [f]_k^{k+1} \equiv \text{false}
 \]
Encoding of f on k–Loops $l[f]_k$

For $k, l, i \geq 0$ and $l, i \leq k$

$$l[p]^i_k \equiv p(s_i)$$

$$l[f \land g]^i_k \equiv l[f]^i_k \land l[g]^i_k$$

$$l[Gf]^i_k \equiv l[f]^i_k \land l[Gg]^{\text{succ}(i)}_k$$

$$l[f \mathcal{U} g]^i_k \equiv l[g]^i_k \lor (l[f]^i_k \land l[f \mathcal{U} g]^{\text{succ}(i)}_k)$$

$$l[-p]^i_k \equiv \neg p(s_i)$$

$$l[f \lor g]^i_k \equiv l[f]^i_k \lor l[g]^i_k$$

$$l[Ff]^i_k \equiv l[f]^i_k \lor l[Ff]^{\text{succ}(i)}_k$$

$$l[Xf]^i_k \equiv l[f]^{\text{succ}(i)}_k$$

where $\text{succ}(i)$ is defined as follows.

$$\text{succ}(i) = \begin{cases}
 i + 1 & \text{if } i < k \\
 l & \text{if } i = k
\end{cases}$$
Encoding of the Looping Conditions

A loop forms if there is a transition from s_k back to s_i for $i \leq k$.

There are k states s_i, the looping condition of k-path is a disjunction of k different looping conditions.

$$L_k = \bigvee_{i=0}^{k} iL_k$$

where

$$iL_k = R(s_k, s_i).$$
Let M be a Kripke structure, f an LTL formula, and $k \geq 0$ a bound.

$$[[M, f]]_k = [[M]]_k \land \left((\neg L_k \land [[f]]_k^0) \land \bigvee_{i=0}^{k} (L_k \land [[f]]_k^0) \right)$$

$[[M, f]]_k$ is satisfiable if, and only if, $M \models_k E(f)$.

$[[M, f]]_k$ is satisfiable if, and only if, $M \models_k \neg f$ does not hold.
An BMC Example: Translation

- $M \models G\neg(a \land b)$ for $k = 2$.
- $M = (I, R)$ where

\[
I = \neg a \land \neg b \\
R = (\neg a \land \neg b \land a' \land \neg b') \lor (\neg a \land \neg b \land \neg a' \land b') \lor \\
(\neg a \land b \land \neg a' \land \neg b') \lor (a \land \neg b \land \neg a' \land \neg b') \lor \\
(a \land \neg b \land a' \land b') \lor (a \land b \land \neg a' \land \neg b')
\]