Explicit Model Checking

Hao Zheng
Dept. of Computer Science & Eng.
Univ. of South Florida
Definition of Model Checking

• Given a M, and a specification f,

• Model checking problem
 – Find all states s of M such that $M, s |= f$.
 – And check that $I \subseteq \{s\}$.

• Efficient model checking algorithm:
CTL Model Checking

• Given a M and a CTL formula f, $M \models f$?
 – F holds on every initial state of M.
• Algorithms needed only for EX, EG, EU.
• Labeling procedure:
 – From atomic formulas, label states that hold the formula.
 – Label s with $\neg f$ if s is not labeled with f.
 – Label s with $f \land g$ if s is labeled with f and g.
 – Label s with $f \lor g$ if s is labeled with f or g.
 – Label s with $\text{EX} f$ if there exists a $s \rightarrow s'$ such that s' is labeled with f.
CTL Model Checking (cont'd)

- Labeling procedure:
 - Label s with $\mathbf{E}[f \mathbf{U} g]$ as follows:
 - Label all s' with $\mathbf{E}[f \mathbf{U} g]$ that is already labeled with g;
 - Repeat: label s with $\mathbf{E}[f \mathbf{U} g]$ if $s \rightarrow s'$ and s is labeled with f.
 - Label s with $\mathbf{E} \mathbf{G} f$:
 - Delete states where f does not hold;
 - Find maximal strongly connected components (SCC);
 - Label every state in SCC with $\mathbf{E} \mathbf{G} f$;
 - Label other state s with $\mathbf{E} \mathbf{G} f$ if $s \rightarrow s'$ and s' is labeled with f.
Pseudo Code

function SAT_{EX}(M, f) begin
 f = true : return S;
 f = true : return ∅;
 f = atomic : return \{ s ∈ S \mid f ∈ L(s) \};
 f = ¬g : return S − SAT(g);
 f = g ∧ h : return SAT(g) \cap SAT(f);
 f = g ∨ h : return SAT(g) \cup SAT(h);
 f = g → h : return SAT(¬g ∨ h);
 f = AX g : return SAT(¬EX ¬g);
 f = EX g : return SAT(¬EX ¬g);
 f = AG g : return SAT(¬EF ¬g);
 f = EG g : return SAT_{EG}(g);
 f = AF g : return SAT(¬EG ¬g);
 f = EF g : return SAT_{EU}(true, g);
 f = A(g U h): return SAT(¬(E[¬h U (¬g ∧ ¬h)] \lor EG h));
 f = E[g U h] : return SAT_{EU}(g, h);
end;
function $\text{SAT}_{EX}(M, f)$
 begin
 $X = \text{SAT}(f)$;
 $Y = \text{pre}\exists(X)$;
 return Y;
 end;

$\text{pre}\exists(X) = \{ s \in S \mid \exists s', \ s \rightarrow s' \text{ and } s' \in X \}$
Pseudo Code (cont'd)

function $\text{SAT}_{\text{EU}}(M, f, g)$
begin
 $X = \text{SAT}(g)$;
 $Y = \emptyset$;
 $Z = \text{SAT}(f)$;
 repeat until $X == Y$ begin
 $Y = X$;
 $X = X \cup \{ s | s \in \text{pre}_{\exists}(X) \text{ and } s \in Z \}$;
 return Y;
end;
function $\text{SAT}_{\text{EG}}(M, f)$
begin
$X = \text{SAT}(f);$
$Y = Y \cup \text{SCC}(X);$
$Z = \emptyset;$
repeat until $Y == Z$ begin
 $Z = Y;$
 $Y = Y \cup \{ s \mid s \in \text{pre}\exists(X) \text{ and } s \in X \};$
return $Y;$
end;
An Example: Mutual Exclusion

\[f = E[\neg c_2 \cup c_1] \]
An Example: Mutual Exclusion

\[f = E[\neg c_2 U c_1] \]
An Example: Mutual Exclusion

\[f = E[\neg c_2 \cup c_1] \]
An Example: Mutual Exclusion

\[f = E[\neg c_2 U c_1] \]
CTL Model Checking with Fairness

• Models may contain paths impossible in reality.
 – Due to the limitation of modeling methods.
 – Ex.: A mutex can stay in critical section forever.
 – Would lead to wrong verification results.

• Fairness are CTL formulas that hold infinitely often on all paths.
 – Those that do not satisfy fairness are removed.

• Fairness example:
 – Mutex is not in its critical section $\text{AG AF } \neg (state=\text{critical})$.
An Example: Mutual Exclusion

\[f = \mathcal{A}[t_1 \rightarrow \mathcal{A}F \, c_1] \]
How to Verify with Fairness

- Find all SCCs in a model.
- Given a fairness formula f, remove any SCC where f does not hold in any state.
- Any state in the restricted (fair) model that can reach one of remaining SCCs has a fair path from it.
Concepts of Fix-Points

- Given a set S and a function $F: P(S) \rightarrow P(S)$, F is a monotonic if $F(X) \subseteq F(Y)$ for $X \subseteq Y \subseteq S$.
- A fix point of a monotonic function F is $X \subseteq S$ such that $X = F(X)$.
- Ex.: $S=\{s_0, s_1\}$, and $F(Y) = Y \cup \{s_0\}$.
 - $Y=\emptyset$, $F(Y) = \{s_0\}$, $F(F(Y)) = \{s_0\}$.
 - $Y= \{s_1\}$, $F(Y) = \{s_0, s_1\}$, $F(F(Y)) = \{s_0, s_1\}$.
- Ex.: $S=\{s_0, s_1\}$, and $G(Y) = \text{if } Y=\{s_0\} \text{ then } \{s_1\} \text{ else } \{s_0\}$.
 - Any fix point of $G(Y)$?
Concepts of Fix Points (cont'd)

- X_G is the greatest fix point of F if $X_G \supseteq X$ for all other fix points X of F.

- X_L is the least fix point of F if $X_L \subseteq X$ for all other fix points X of F.
Concepts of Fix-Points (cont'd)

- $F^i(X) = F(...F(X)...)$

- Fixpoint theorem:
 - Let S be a set, and $|S| = n$. If $F: P(S) \rightarrow P(S)$ is a monotonic function, then there exist i and j such $F^i(\emptyset)$ is the least fix point of F, and $F^j(S)$ is the greatest fix point of F.

- Every monotonic function has a least and a greatest fix points.

- It gives methods to calculate the fix points.
Fix-point Representation of CTL

• Let $[f]$ be the set of states satisfying f.
• $[\text{EX}f] = \text{pre}_\exists[f]$
• $[\text{EG}f] = [f] \cap [\text{EX EG}f]$
 – $\text{EG}f = f \land \text{EX Eg}f$
 – $[\text{EG}f]$ is the greatest fix point of $F(X) = [f] \cap \text{pre}_\exists[X]$.

• $[\text{E}(f \cup g)] = [g] \cup [\text{EX E}(f \cup g)]$
 – $\text{E}(f \cup g) = g \lor \text{EX E}(f \cup g)$
 – $[\text{E}(f \cup g)]$ is the least fix point of $F(X) = [g] \cup \text{pre}_\exists[X]$.
LTL Model Checking

- Given a model M and an LTL formula f
 - All traces of M must satisfy f.
 - If a trace of M does not satisfy f.
 - Countere-xample is generated

- LTL model checking: $\Sigma_M \subseteq \Sigma_f$
 - Σ_M is the set of traces of M
 - Σ_f is the set of traces that satisfy f
 - Note: a trace is a sequence of states.

- Equivalently $\Sigma_M \cap \Sigma_{\neg f} = \emptyset$
LTL Model Checking (cont'd)

- Construct an automaton accepting all traces for \(f, A_f \).
- Compose \(M \) and \(A_f \), \(M \parallel A_f \)
- If \(M \parallel A_f \) has no paths, then \(M \models \neg f \).
- Otherwise, the path in \(M \parallel A_f \) is the counter-example.
An Example

\[M \models \neg(a \lor b) \ ? \text{ or } M \not\models (a \lor b) \ ? \]
Automaton for \((a \cup b)\)
$M \parallel (a \cup b)$
Constructing the Automaton

- Re-write LTL formulas in one of sufficient sets: \{U, X\}.
- Create closure \(C(f) \) of a formula \(f \):
 - Including all sub-formulas and their complements
 - Ex.: \(C(a \ U \ b) = \{ a, b, \neg a, \neg b, a \ U \ b, \neg(a \ U \ b) \} \).
- \(s \in S \) of \(A_f \) are \(P(C(f)) \) satisfying the following conditions:
 - Let \(g \in C(f) \), \(g \in s \) and \(\neg g \in s \) cannot hold at the same time.
 - If \(g_1 \lor g_2 \in C(f) \), \(g_1 \lor g_2 \in s \) if \(g_1 \in s \) or \(g_2 \in s \).
 - Other boolean combinations are handled similarly.
 - If \(g_1 \ U \ g_2 \in s \), then \(g_2 \in s \) or \(g_1 \in s \).
 - If \(\neg(g_1 \ U \ g_2) \in s \), then \(\neg g_2 \in s \).
Constructing the Automaton (cont'd)

• Initial states are those labeled with f.

• $(s, s') \in T$ of A_f are constructed as follows:
 - If $Xg \in s$, then $g \in s'$.
 - If $\neg Xg \in s$, then $\neg g \in s'$.
 - If $g_1 \cup g_2 \in s$ and $g_2 \notin s$, then $g_1 \cup g_2 \in s'$.
 - If $\neg (g_1 \cup g_2) \in s$ and $g_1 \in s$, then $\neg (g_1 \cup g_2) \in s'$.

• The last two rules are due to the following equiv.:
 - $g_1 \cup g_2 = g_2 \lor (g_1 \land X(g_1 \cup g_2))$
 - $\neg (g_1 \cup g_2) = \neg g_2 \land (\neg g_1 \lor X \neg (g_1 \cup g_2))$
Automaton Construction: An Example

\[f = Xa \quad \text{and} \quad C(f) = \{ a, \neg a, Xa, \neg Xa \} \]
Acceptance Conditions

• Used to define the eventuality condition of $a \mathbin{U} b$.
 – Not all states are accepting states.
 – Every state is an accepting state in A_{xa}.

• Accepting condition for $a \mathbin{U} b$:
 – Every path in $A_{a \mathbin{U} b}$ has infinitely many states satisfying
 $\neg(a \mathbin{U} b) \lor b$
 – This requires that b must happen eventually for $a \mathbin{U} b$ to be accepted.
 – In other words, states in $A_{a \mathbin{U} b}$ labelled with either $\neg(a \mathbin{U} b)$
 or b are accepting states.
Alternative Construction of $A_{a U b}$

- $C(a U b) = \{ a, \neg a, b, \neg b \}$
- States: $ab, \neg ab, a\neg b, \neg a\neg b$
- Transition $s \rightarrow s'$ exists if
 - $a \in L(s)$, and $a \in L(s')$ or $b \in L(s')$.
 - $b \in L(s)$, and don't-care for $L(s')$
$M \models A_a U b$?
An Exercise

\[M \models \neg Fp \]
An Exercise (cont'd)

\[M \models \neg Fp \Rightarrow M \models \neg(\text{TRUE} \cup p) \]

\[f = \text{TRUE} \cup p \]

\[C(f) = \{ p, \neg p, f, \neg f \} \]
CTL Model Checking for LTL

• LTL model checking: if \((M \parallel A \neg f)\) is empty, then \(f\) holds on \(M\).

• If \(\neg f\) is regarded as fairness constraints, then \(f\) can be checked as follow:

 \(- \quad M_F \models EG \text{ true} \quad \text{holds, then} \quad f \quad \text{holds on} \quad M.\)
Reading List

